
Intrepid Net Computing

www.intrepidnetcomputing.com

Computer Security is Algorithmically Intractable

Dr. Brent Kirkpatrick∗

Aug. 17, 2018

c© 2018 Intrepid Net Computing

∗bbkirk@intrepidnetcomputing.com

1



Abstract

Computer security, as a problem, is difficult to define, and when we do invent

formal definitions, most of those definitions appear to be undecidable. Building on the

work of Alan Turning, where he proved that the halting problem is undecidable, we

demonstrate that three definitions related to computer security are undecidable.

Practical computer security must be pursued, regardless of algorithmic intractabil-

ity. Computer scientists can discover and innovate new tools for computer security

that constitute breakthroughs.

Note: Intellectual property rights for this document and the methods dis-

cussed here belong to Intrepid Net Computing. All rights reserved. Do not

distribute.

Operating system security and network

security hinge on skilled scientists

securing small code-bases.

Brent Kirkpatrick

1 Introduction

How is computer security defined? Why is computer security so difficult?

Formal mathematical definitions relating to computer security have been demonstrated

to be intractable. Defining computer security itself is a nebulous concept. Various attempts

have been made, leading all the way back to the original proof of undecidability and the

definition of the halting problem [1].

Since then other attempts include the definition of formal verification, the Post Cor-

respondence Problem, and other problems [2]. In all these cases, mathematical proofs of

2



undecidability demonstrate that these problems have no algorithmic solutions. This means

that there are no computer programs that can produce answers to these problems.

This manuscript introduces three new formalisms for computer security:

1. The Digital Forensics Problem,

2. The Hacking Detection Problem, and

3. The Buffer Over-Run Detection Problem.

The manuscript gives proofs that these problems are undecidable. This leaves open the

question of whether computer security can be formalized in a way that is tractable or which

special cases of computer security are tractable. For now, we discuss how to obtain computer

security in the face of algorithmic intractability.

2 Background

Computer science is split into two subfields: theory and systems. The subfield of theory is

devoted to understanding computational complexity theory, algorithms, game theory, quan-

tum computing, computational biology, randomized algorithms, and machine learning. The

subfield of systems is devoted to writing the computer programs for operating systems, net-

works, and databases. There are few scientists that span the divide between theory and

systems.

The theory of computing is the study of algorithmic tractability and formal language

theory [2]. The papers that founded this field where the Turing-Church thesis of 1936 [3, 1].

This established a formal definition of an algorithm. On that foundation, the original proof

of undecidability was done by Alan Turing [1].

Computer systems builds on a foundation of good programming skills. These skills are

built through experience in programming and through the use of formal methods. Formal

3



methods are rigorous tools from mathematics that establish guarantees about the operation

of aspects of a computer program. Systems programmers write programs that work in

practice.

Computer security is a subfield of computer systems that aims to secure computer systems

against adversaries called hackers. From examining the work of hackers, we know that

buffer over-runs are at the heart of most vulnerabilities [4, 5]. This is well known. Buffer

over-runs are prevalent, and a number tools exist that attempt to detect buffer over-runs

either statically [6, 7] or dynamically [8, 9]. All of these tools have false positives and false

negatives in detection. None of these tools constitute formal methods, and this manuscript

will elucidate why.

3 Results

Here we discuss new theoretical results for problems pertaining to computer security. Before

we can give the theorems, we must formalize the problems. The main theorems are proven by

reduction to the halting problem and by contradiction. We will also discuss the algorithmic

intuition that leads to these reductions.

Dealing with one problem at a time, first we formalize digital forensics.

Problem 1 (Digital Forensics). Given a clean operating system installation and a hacked

operating system installation (where all the legitimate operating system code is identical in

both installations), identify every byte of foreign machine code that executes.

Why is this problem mathematically rigorous in statement? Each operating system

installation is represented as a string of bytes. All the bytes that pertain to the operating

system are identical in both strings. The only executed instructions that will differ are

the instructions for the foreign machine code that the hacker(s) introduced. This definition

allows for these strings to contain flat data files that are never executed. This definition

4



even allows for those flat data files (i.e. configuration files) to differ on the two installations,

although this is not mathematically necessary.

Because this problem is not as intuitive as we want, we will now define an equivalent-by-

complexity problem:

Problem 2 (Hacking Detection). Given a clean operating system installation and a hacked

operating system installation (where all the legitimate operating system code is identical in

both installations), identify the first byte of foreign machine code that executes.

This formalism is interesting because this first byte of foreign machine code has a name:

the hook. Hacker’s use the hook to load their machine code into memory for execution. This

problem definition seeks to answer one question: does foreign machine code get executed?

Oddly enough, in order to detect hacking, there must be at least one byte of foreign machine

code that executes. This is equivalent to the previous definition by complexity. Meaning, if

you are to find the first byte of foreign machine code, this is just as hard as finding all the

bytes of foreign machine code. As we will see shortly.

The algorithmic intuition that explains the intractability of this problem to us is the

following. In order to detect the first byte of foreign machine code, we would have to execute

the two versions of the OS side by side, marking each common byte as it is executed. The

first time we encounter a byte for execution that differs, we would flag that byte as foreign

machine code. This intuition suggests that the problem is undecidable. We will do a formal

reduction to the halting problem, next.

Our approach now is to reduce this problem to the halting problem. If we have a Turing

Machine (TM) that can decide this Hacking Detection Problem, then we will use that TM

to create a new TM that can decide the halting problem. This gives a contradiction and

proves our claim of undecidability.

Theorem 1. The Hacking Detection Problem is undecidable.

5



Proof. Assume that we have a Turing Machine hackTM that decides the Hacking Detection

Problem. We will prove by contradiction that no such TM can exist. We need to name

several objects. Let ITM be an arbitrary input Turing Machine. Now we will define haltTM .

This is designed to be a TM that decides the halting problem.

haltTM takes the arbitrary input ITM , makes a modification called JTM , and then runs

hackTM on the clean input ITM and the hacked input JTM . haltTM returns true if and only

if hackTM reports that the JTM has foreign machine code.

The modified input JTM is obtained from ITM by adding a single print statement “this

is hacked” to the end of the program. Alternatively, if there are multiple exit statements

from the program then each of them must consist of a jump statement to the end of the ITM

program, after which the new statement is added.

JTM will print “this is hacked” if and only if ITM halts. This means that our definition

of haltTM decides the halting problem. This is a contradiction to our assumption. Therefore

we have proven that no Turing Machine can decide the Hacking Detection Problem.

Corollary 1. The Digital Forensics Problem is undecidable.

Proof. Use the same construction, except include all the bytes of foreign machine code at

the end of the modified TM.

Next we discuss the problem of detecting buffer over-runs. The existing literature claims

that buffer over-runs are a significant source of vulnerabilities, and so detecting them would

improve computer security. Formally, the problem is as follows:

Problem 3 (Buffer Over-Run Detection). Every time a memory buffer (array) is written,

check that the length of the input written to the buffer is within the bounds of the allocated

buffer size.

This is a formal definition, because the buffer is allocated (declared) once with a fixed

6



size. It can be written many times, but each time it is written, we must check that the

length of data written to the buffer is within the limit declared during allocation.

The algorithmic intuition that explains the intractability of this problem to us is the

following. In order to detect a buffer over-run, we might need to explore all the dynamic

executions paths of the program (backward) in order to discover that there was a mistaken

bound used to check the length of the input written to the array. As soon as we start

exploring all the execution paths, we are begging to decide whether the program ever halts.

Before we can prove the formal reduction, we need to establish a result that seems

counter-intuitive at first. The buffer over-run appears to be an artifact of finite memory

machines.

Theorem 2. Every Turing Machine can be written without buffer over-runs.

Proof. Recall that the Turing Machine has an infinite tape and a customized alphabet.

Therefore, we can simply declare the end of a buffer with a special symbol. Whenever we

run into the end of a buffer, we can copy the whole stack down to a fresh portion of the tape,

allocate new space, copy everything and then continue writing. Since the tape of a TM is

infinite the memory for buffer allocations is effectively infinite.

Once we understand this, then we know that any TM can be written without buffer

over-runs. Now we can do the formal proof, by contradiction, that no algorithm exists for

detecting buffer over-runs.

Theorem 3. The Buffer Over-Run Detection Problem is undecidable.

Proof. Assume that we have a Turing Machine (TM) that decides the Buffer Over-Run

Detection Problem, called BTM . Let us be given an arbitrary TM as input, ITM . We will

take this Turing Machine and modify it so that we can use BTM to decide if ITM ever halts.

Let our modified TM be called JTM , and it will be defined as ITM with two modifications:

7



1. Allocate a buffer b of length 0 at the beginning of JTM

2. Add a buffer b write operation of length 2 to the very end of JTM

Check also that every exit command in ITM redirect to the end of ITM , before those two

modifications are made.

By Theorem 2, we can assume that the input ITM has no buffer over-runs. Now, our

decider BTM applied to the input JTM will detect a buffer over-run, because we wrote one

in. This means that we detect the buffer over-run in JTM if and only if ITM halts. This is

a contradiction to the undecidability of the halting problem. Therefore there is no Turing

Machine that decides the Buffer Over-Run Detection Problem.

We have discussed three proofs of undecidability for three formal problems in computer

security. All three of these problems are motivated by practical applications in computer

security. We are now faced with the challenge of discovering computer security without the

direct aid of computer algorithms.

4 Practical Computer Security

These undecidability results for formal problems in computer security would seem to suggest

that computer security is impossible. However, that is not true. An area of math that is

algorithmically intractable is logic itself. Yet, every day productive mathematicians make

useful contributions to our understanding of logic. The idea of undecidability simply suggests

that a machine cannot solve the problem. Our professionalism as computer scientists is what

drives us forward to do computer security with human intuition and human innovation.

Operating system security and network security hinge on skilled scientists securing small

code-bases.

Digital forensics is one task in computer security that is undecidable. There are numerous

8



proprietary and public methods used to do digital forensics. There are no guarantees that the

digital forensics scientists will find what is there to find. However, good scientists routinely

find interesting machine code and uncover critical vulnerabilities.

Incident response is a task in computer security that usually relies on digital forensics

for its rigor. Incident response is the task of confronting ongoing cyberattack in real-time

in order to secure a network. Incident response is done, accurately enough, by many IT

security practitioners. In this case ’accurately enough’ means that they are able to reduce

the risk of hacking substantially enough that the hacking victim experiences relief.

Code reviews are done every day by skilled software engineers who find vulnerabilities in

computer code. Code reviews look for buffer over-runs, for instances where user supplied code

is executed, and for other tricky vulnerabilities. Code reviews are conducted of both closed

and open source software systems. Sometimes sophisticated static or dynamic analysis tools

are employed during code reviews. Sometimes weaknesses in the hardware are considered.

Security testing is performed by skilled testers on their own software. This is done with

the idea of demonstrating that a vulnerability can be exploited. Testing, including security

testing, will always be a mainstay of software engineering.

Writing less code is something some very sophisticated software companies do. It is clear

that the attack surface of a computer program increases with the number of conditional

statements. When very skilled programmers work to write very short programs and to prove

guarantees about those programs, we have better security. These people are algorithms

experts.

All of these tools can be used to do practical computer security. Practical computer

security is an engineering goal that can be assessed with principles from software engineering.

A degree of engineering rigor can be employed that makes computer security practical.

It is our task as professionals to continue delivering computer security. Even proofs of

undecidability cannot dissuade us from our responsibilities. We need to look for solvable

9



formalisms and produce tools that help scientists do the hard work of securing operating

systems and networks.

Biography. Dr. Kirkpatrick was a professor of computer science at the University of

Miami before taking the opportunity to participate in computer security. He is a scientific

researcher with expertise in systems, algorithms, data science, and artificial intelligence.

References

[1] Alan Turing. The undecidable, basic papers on undecidable propositions, unsolvable

problems and computable functions. New York: Raven Press. Davis, edited 1965, 1936.

[2] Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, Boston,

3rd edition, 2013.

[3] Alonzo Church. The undecidable, basic papers on undecidable propositions, unsolvable

problems and computable functions. New York: Raven Press. Davis, edited 1965, 1934.

[4] S. Zubair and A. Zamani. SigFree: A signature-free buffer overrun and overflow attack

blocker. International Journal of Advanced Research in Computer Science and Software

Engineering, 4(3), 2014.

[5] E. Leontie, G. Bloom, O. Gelbart, B. Narahari, and R. Semha. A compiler-hardware tech-

nique for protecting against buffer overflow attacks. Journal of Information Assurance

and Security, 5, 2010.

[6] D. Wagner, J.S. Foster, E.A. Brewer, and A. Aiken. A first step towards automated

detection of buffer overrun vulnerabilities. NDSS, pages 2000–02, 2000.

10



[7] D. Wagner and R. Dean. Intrusion detection via static analysis. Security and Privacy,

2001.

[8] O. Ruwase and M.S. Lam. A practical dynamic buffer overflow detector. NDSS, 2004.

[9] J. Newsome and D.X. Song. Dynamic taint analysis for automatic detection, analysis,

and signature generation of exploits on commodity software. NDSS, 2005.

11


