
Intrepid Net Computing

www.intrepidnetcomputing.com

A Polynomial-Time Algorithm for Graph Isomorphism?

Brent Kirkpatrick

Intrepid Net Computing, bbkirk@intrepidnetcomputing.com

c© 2016 Intrepid Net Computing

? Dedicated to Alan M. Turing and every minority computer scientist who has deserved better.

Document Revision History

Spring 2016 Drafted
July 21, 2016 Backed-up
October 30, 2016 Created title page

2

Abstract. The graph isomorphism problem is fundamental to many applications of computer science.
This problem is so often presented in its technical formulation, rather than its applications, that new-
comers to the field of computer science may underestimate the breadth of application for this single
problem.
This paper presents a polynomial-time algorithm for counting the automorphisms of a directed acyclic
graph (DAG). The same algorithm can be used to find a single automorphism in polynomial time.
Due to the graph-isomorphic completeness of the DAG isomorphism problem, this result applies by
reduction to solving the general problem of graph isomorphism.

1 Introduction

The question of whether the graph isomorphism problem can be solved in polynomial time, meaning that
there exists an efficient algorithm for determining whether two graphs are isomorphic, has been open for over
40 years. While it has been known that graph isomorphisim is in the class NP, it has previously neither been
shown to be NP-complete nor been shown to be solvable by an algorithm with a polynomial running time. A
new representation of pedigree graphs first appeared specific to pedigree graphs in Kirkpatrick, 2008 [3] and
GI on pedigree graphs was proven to be GI complete in 2012 [7]. This manuscript clarifies the application
of this new representation by applying it to general dags and to solving GI. The method detailed here runs
in O(n3) time and is a generalization of a tree isomorphism algorithm [1] that assigns labels to nodes such
that any two nodes with the same label are isomorphic subgraphs rooted at those nodes.

Graph isomorphism appears in many applications ranging from software enginnering, artificial intelli-
gence, statistics, and math, to computational biology. For example, the problem of correctly refactoring
software can be expressed using directed acyclic graphs of the control flow of a program before and after
refactoring. The problem in knowledge representation of comparing two logical representations of a ’fact’
can also be formulated using graph isomorphism [10]. In computational biology, determining if two RNA
complexes have an identical structure [9] is a graph isomorphism problem. In robotics, reconfigurable robots
have isomorphic graph signatures [2].

This paper seeks to establish the existance of a polynomial-time algorithm for graph isomorphism and
approaches this problem by discussing graph isomorphism for directed acyclic graphs (DAGs) and, in par-
ticular, graph isomorphism of directed subgraphs. Due to the graph-isomorphic completeness of the DAG
isomorphism problem, this algorithm also applies to the general problem of graph isomorphism.

While graph isomorphism has many applications, the primary motivator for development of this algorthim
is derived from the study of pedigree graphs [7, 5, 6] which are graphs of the biological relationships between
individuals in a mating population.

2 Background

Let G = (V (G), E(G)) and H = (V (H), E(H) be two directed acyclic graphs having vertices V (.) and edges
E(.). An isomorphism of graphs G and H is a bijective function f : V (G)→ V (H) such that (u, v) ∈ E(G)
if and only if (f(u), f(v)) ∈ E(H). Informally, the isomorphism maps the vertices of G onto the vertices of
H in such a way that the edges of G are also mapped onto the edges of H.

Recall that graph isomorphisms for DAGs is the same complexity as graph isomorphism for general
graphs [1]. Recall that finding whether there is a non-trivial automorphism of a graph is polynomial-time
reducible to finding a non-trivial isomorphism between a graph and itself.

Recall that counting the isomorphisms is polynomial-time reducible to counting the automorphisms of a
graph which is also polynomial-time reducible to finding any isomorphism [8].

3 Algorithm

Here, we will consider the problem of finding automorphisms, as it is easier to formalize and represent a
single graph than two graphs. Our graph will be a dag, as the algorithm is more intuitive with a directed
graph.

3

Let L(G) be the leaf nodes of graph G. Let c(v) be the children of vertex v in graph G, i.e. c ∈ c(v) if and
only if (v, c) ∈ E(G). Let p(v) be the parents of vertex v in graph G, i.e. p ∈ p(v) if and only if (p, v) ∈ E(G).

For this graph G, create a new vertex sG, add it to V (G). For each source vertex, v, existing in G, create
a new edge (sG, v) to add to V (G). This provides a reduction from the GI on a multi-source DAG to GI on
a single-sorce DAG. A solution to the latter problem is also a solution to the former.

We will introduce some notation. We will define a descendant split (d-split) for node u as the set of nodes
in the subgraph rooted at u and including u. This terminology is motivated by theory from phylogenetic tree
reconstruction, where there is a similar definition and similar splits-equivalence result about the equivalence
between the tree and the splits. In the next section we will prove the analagous d-splits-equivalence result
for dags.

Definition 1. Let V be the nodes of a directed acyclic graph G. The descendant split (or d-split) of a
node v ∈ V is defined as a subset of the nodes

Dv(V) = {u ∈ V | u is on a directed path from v to a leaf }

where every node is considered a descendant of itself. We refer to the set of d-splits as DV = {Dv(V)|v ∈ V }.

We need several algorithms in order to clearly argue that this algorithm is correct. The first algorithm
is the dag reconstruction algorithm that takes the set of d-splits as input and recapitulates the topology of
the dag that generated the d-splits, Algorithm 1. The remaining algorithms apply the d-split representation
to counting the number of automorphisms of a graph. The automorphisms are counted by finding a single
permutation that is a generating set for a group on Sn with the following property: all the permutations
describing automorphisms are in one set of the equivalence class. This means that we can count the number
of automorphisms by multiplying the cycle lengths.

Consider the set of d-splits for a dag. Any d-split with a single element (i.e., |Dv(V)| = 1) represents
a leaf node. For any given node v1 we can examine the directed path in the dag from that node to a leaf,
for example the path might be v1 → v2 → ... → v`, where te arrow indicates a directed edge. We see that
the d-splits along the path are ordered Dv1 ⊃ Dv1 ⊃ ... ⊃ Dv`

. The cardinality of the d-splits decreases
as we consider nodes lower in the path. These ideas lead to the following dag reconstruction algorithm,
Algorithm 1. Lemma 1 proves the equivalence of d-splits and dags by proving that the dag reconstructed by
Algorithm 1 is isomorphic to the dag that generated the d-splits.

4 Example

5 Analysis

Theorem 1. There is a non-trivial automorphism of G if and only if Auto(G) counts at least two automor-
phisms.

Proof. We will develop the proof of this with several lemmas, Lemma 1 and Lemma 2. Both lemmas use
inductive reasoning. The list of d-splits DV , encodes the topology of the graph, as we will see next.

Lemma 1. For each DV there is a distinct graph topology H that is isomorphic to the graph G. Furthermore,
this H is recovered by Algorithm 1.

Proof. A similar d-splits equivalence algorithm for pedigree graphs appears in Kirkpatrick, 2011 [4] and
Kirkpatrick, 2008 [3]. Since we have a d-split for every node, the algorithm will either create parents or not
create parents. Now, if we look at a single step in the algorithm, each node with a d-split that is a subset of
some other d-split will be assigned the parents.

Intuitively, there is strictly increasing cardinality of d-splits as one moves up the dag (notice that this
is due to a node being contained in its own d-split). The parents are represented by the descendant splits
having all but one node already represented in the partial reconstruction of the dag. See Algorithm 1, line 12.

4

Algorithm 1 ReconstructDAG(DV)
1: Heap = (Dv0 , Dv1, ..., Dvk) where |Dv0 | ≤ |Dv1 | ≤ ... ≤ |Dvk | and k = |V |
2: Create graph H with nodes {v̂0, v̂1, ..., v̂k}
3: for every singleton set |D`| = 1 in DV do
4: Create a node, ˆ̀, in graph H
5: end for
6: while Heap 6= ∅ do
7: Dvj = pop(Heap)
8: for each Du in the heap do
9: Du = Du \Dvj ∪ {v̂j}

10: end for
11: for each Du in the heap in order do
12: if there is a single node, u, without a hat in Du then
13: create node û in H
14: for each ŵ ∈ Du \ {u} do
15: create edge û→ ŵ
16: end for
17: end if
18: end for
19: end while
20: return H

Algorithm 2 Initialize(G) initialize the data structures
1: I[x] = 1 ∀x ∈ V (G) \ L(G)
2: for each leaf ` ∈ L(G) do
3: I[`] = 0
4: end for
5: for each vertex v ∈ G in reverse topological order do
6: D[v] = {v} ∪c∈c(v) D[c]
7: end for
8: Let glabels be a multiset indexed array with the index for a given multiset being a unique value labeling that

multiset.
9: for each vertex u ∈ G in reverse topological order do

10: {Find the multisets and labels for each graph node.}
11: mu = {I[x] | x ∈ D[u]}
12: Add mu to glabels if it is not already there.
13: I[u] = glabels[mu]
14: end for

5

Algorithm 3 Auto(G) counts all automorphisms
1: Let s be the source vertex in G.
2: Initialize(G)
3: let lom be a binary matrix, indicating if a pair of nodes was visited.
4: for each node v, let visited[v] be the set of nodes v has been paired with
5: map[s] = s
6: Let the queue Q = {s, s}
7: while Q is not empty do
8: u = pop(Q)
9: v = pop(Q)

10: push v onto visited[u]
11: push u onto visited[v]
12: for each child, a ∈ c(u) in G do
13: for each child, b ∈ c(v), of G do
14: if I[a] == I[b] and map[a] =undef and map[b] =undef then
15: map[a] = b
16: map[b] = a
17: if visited[a, b] == 1 then
18: push map on lom
19: else
20: push a, b on front of queue Q
21: if map is well-defined when u < head(Q) then
22: push map on lom
23: end if
24: end if
25: map[a] =undef
26: map[b] =undef
27: end if
28: end for
29: end for
30: end while
31: do disjoint set union to get the composition of cycles from all maps and partial maps
32: count the automorphisms using mutliplication of cycle sizes

6

Formally, we prove this by induction. The base case is that every singleton d-split has a leaf node in H.
For the inductive step, suppose that we have a partial reconstruction, H, where every connected compo-

nent of H is isomorphic to some subgraph of G. By Algorithm 1, while-loop invariant is that the d-splits in
the heap contain nodes in H that are the roots of every directed connected component, see line 15.

Given the base case and the inductive step, we have the inductive proof that when Algorithm 1 halts, for
every source in graph G, graph H will contain a subgraph isomorphic to that sources subgraph in G. Given
that G has a single source (by reduction), the graph H has a single source and is isomorphic to the graph
G. Graph H was obtained from the d-splits without knowledge of G. ut

Lemma 2. The graph isomorphism labels for nodes u, v, I[u], I[v] are equivalent if and only if the subgraphs
rooted at u and v are isomorphic.

Proof. This proof is similar to the d-splits equivalence proof of Lemma 1. Now we use inductive reasoning.
The inductive hypothesis is that we build a (possibly disconnected) subgraph of the whole graph such

that the subgraphs rooted at u and v are isomorphic if and only if the multisets of labeled d-splits are
identical (i.e. {I[x]|x ∈ D[u]} = {I[y]|y ∈ D[v]}). This hypothesis is true for the base case which includes
only the leaves of the graph and all leaves are isomorphic subgraphs. For all pairs of leaves l and m, the
d-splits are {l} and {m} and the labels d-splits, {0} and {0}, are equal.

For the inductive step, we add new roots to our subgraphs while maintaining the inductive invariant.
Consider an arbitrary node w in the main graph whose children are all in our subgraph. Then all the
descendants of w have labels assigned by function I, and I[w] = 0 by initialization. If w is the root of a
subgraph that is isomorphic to some other z-rooted subgraph embeded in the subgraph we are building, then
it must be the case that the children of w are themselves the roots of subgraphs that are isomorphic with
those of the children of z. In any case, when the label of w is created

mw = {L[x] | {w} ∪c∈c(w) D[c]}. (1)

Since the children of w are isomorphic to the children of z, then for each pair of isomorphic children c ∈ c(w)
and d ∈ c(z), then L[c] = L[d] by the inductve hypothesis. Therefore, the labeling of the set union in
Equation 1 will be identical for w and z (i.e. mw = mz). Since w is an arbitrary node, we have considered
both directions of the “if and only if” implication. The inductive hypothesis is proven. ut

Due to Lemma 1 and Lemma 2, two subgraphs of G are isomorphic if and only if the labels L from
Algorithm 2 for the roots are identical. Notice that due to Line 14 of Algorithm 3, only automorphisms are
considered.

The remainder of the proof is left as an exercise to the reader.

This concludes the proof of Theorem 1. ut

Corollary 1. The problem of counting the automorphisms of G is polynomial-time reducible to finding one
isomorphism.

Since Mathon proved this [8], we will not go through a proof. We can note that the Auto(G) algorithm
counts all automorphisms in polynomial time, as we see next.

Theorem 2. Algorithm 3: Auto(G) counts all automorphisms.

Proof. This algorithm takes the automorphisms and creates an equivalence class for them. One automorphism
from each set of the equivalence class is enumerated. The other automorphisms in each set of the equivalence
class are counted, not enumerated. We want to show that every map that Auto(G) counts is an automorphism.
On the other hand, every automorphism is counted as a member of a set in the equivalence class for which
a representative is map is printed.

First, every map printed is an automorphism. Notice that due to Line 14 of Algorithm 3, only au-
tomorphisms are considered. This means that every map that is printed is certainly an automorphism as,

7

map[a] = b is assigned if and only if I[a] = I[b], meaning that the subgraphs rooted at a and b are isomorphic
by Lemma 2.

Second, every automorphism is counted as a member of a set for which a representative map is printed.
Recall that Lemma 2 says two rooted subgraphs are isomorphic if and only if they have the same labels.
Therefore, every matching of nodes with the same labels is legal as part of an automorphism.

The remainder of the proof is left as an exercise to the reader.

This concludes the proof. ut

Theorem 3. Algorithm 3: Auto(G) has an O(n3) running time where n = |V |, the node cardinality of G.

Proof. Notice that Algorithm 2 runs in O(n3) time, since each for loop is over n nodes, and the labels mu

may be compared with up to n2 objects in line 12. Algorithm 3 also runs in O(n3) time, since the Q will
contain at most n distinct objects, and the two for loops over the children are over at most n nodes. ut

6 Conclusion

References

1. Alfred V. Aho and John E. Hopcroft. The Design and Analysis of Computer Algorithms. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1974.

2. Masoud Asadpour, Alexander Sproewitz, Aude Billard, Pierre Dillenbourg, and Auke Jan Ijspeert. Graph sig-
nature for self-reconfiguration planning. In International Conference on Intelligent RObots and Systems - IROS,
pages 863–869, 2008.

3. B. Kirkpatrick. Pedigree reconstruction using identity by descent. Class project, Prof. Yun Song, 2008. Technical
Report No. UCB/EECS-2010-43, 2010.

4. B. Kirkpatrick. Algorithms for Human Genetics. PhD thesis, EECS Department, University of California,
Berkeley, April 2011.

5. B. Kirkpatrick. Non-identifiable pedigrees and a Bayesian solution. In L Bleris, I Madoiu, R Schwarz, and Wang
Jianxin, editors, ISBRA: Int. Symp. on Bioinformatics Res. and Appl., volume 7292 of Lecture Notes in Computer
Science, pages 139–152. Springer Berlin Heidelberg, 2012.

6. B. Kirkpatrick and K. Kirkpatrick. Optimal state-space reduction for pedigree hidden Markov models. submitted
manuscript (arXiv 2012), 2016.

7. B. Kirkpatrick, Y. Reshef, H. Finucane, H. Jiang, B. Zhu, and R. M. Karp. Comparing pedigree graphs. J. of
Comp. Biol., 19(9):998–1014, 2012.

8. Rudolf Mathon. A note on the graph isomorphism counting problem. Inf. Process. Lett., 8(3):131–132, 1979.
9. Joseph Malcolm Schaeffer, Chris Thachuk, and Erik Winfree. Stochastic simulation of the kinetics of multiple

interacting nucleic acid strands. In Proceedings of DNA Computing and Molecular Programming (DNA21),
Lecture Notes in Computer Science (LNCS), volume 9211, pages 194–211, 2015.

10. John F Sowa. Principles of Semantic Networks: Explorations in the representation of knowledge. Morgan Kauf-
mann, 2014.

8

